




#### Beam BreakUp (BBU) Physics and Simulation

-- Interactions between higher-order modes (HOMs) and beam bunches leading to instabilities --



Jim Crittenden William Lou



#### **Outline**



#### 1) BBU overview

- What is BBU?
- BBU theory
- BBU simulation on Bmad

#### 2) CBETA BBU simulation results

- What is CBETA
- Randomized HOM assignment
- $I_{
  m th}$  statistics (1-pass and 4-pass)

# Optional) Aim for higher $I_{ m th}$

- Results with additional phase-advances
- Results with x-y coupling





### Beam breakup Instability (BBU)

- Higher Order Modes (HOM) in the cavities give undesired kick.
- Off-orbit bunch returns to the cavities and excite more HOMs...(positive feedback)
- BBU limits the maximum achievable current in an ERL  $\longrightarrow$  threshold current  $I_{\mathrm{th}}$
- ullet The goal is to find the  $I_{
  m th}$  for a given lattice.



#### **BBU** theory: the mathematics

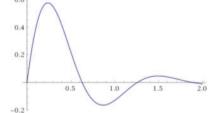


#### Elementary case: 1-dipole-HOM + 1 recirculation pass

$$\Delta p_{x}(t) = \frac{e}{c} W(t - t') x(t') \underline{I(t')} dt'$$

Transverse momentum gained from HOM

Wake function [N/C^2]


Transverse Current offset

Wake function (Cavity HOM property) 
$$W(\tau)=\left(\frac{R}{Q}\right)_{\lambda}\frac{\omega_{\lambda}^2}{2c}e^{-(\omega_{\lambda}/2Q_{\lambda})\tau}\sin\omega_{\lambda}\tau$$

An HOM is characterized by

$$\left( \left( \frac{R}{O} \right)_{\lambda}, Q_{\lambda}, \omega_{\lambda} \right)$$









HOM voltage 
$$V(t) = \frac{c}{e} \Delta p_x(t)$$

**Transverse offset** after recirculation

$$x(t+t_r) = T_{12}p_x(t)$$
 T12 of the transfer matrix is a lattice property

$$V(t) = \int_{-\infty}^{t} W(t - t')I(t')T_{12}\frac{e}{c}V(t' - t_r)dt'$$

Current as a train of (dirac) beam bunches 
$$I(t) = \underbrace{I_0 t_b}_{m=-\infty}^{\text{Measured}} \delta_D(t-t_r-m\underline{t_b})$$





$$V(nt_b + t_r) = I_0 t_b T_{12} \frac{e}{c} \sum_{m=0}^{\infty} W(mt_b) V([n-m]t_b)$$

To solve this difference equation, we write HOM voltage (retaining all possible frequencies  $\omega$ ) as:  $V(t) = \frac{1}{2\pi} \int_{-\infty - ic_0}^{\infty - ic_0} \tilde{V}(\omega') e^{-i\omega' t} d\omega'$ 

After some math, we obtain the dispersion relation between  $I_0$  and  $\omega$ 

$$\frac{1}{I_0} = t_b T_{12} \frac{e}{c} e^{i\omega n_r t_b} w(\delta)$$

$$w(\delta) = \sum_{n=0}^{\infty} W([n+\delta]t_b)e^{i\omega nt_b}$$

At a given  $I_0$ , multiple  $\omega$  (complex) can satisfy the relation. At a stable  $I_0$ , all  $\omega$  must have negative imaginary part. At the threshold current, one  $\omega$  crosses the real axis!!

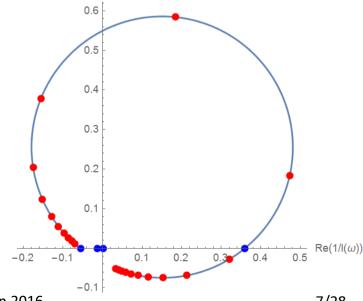


### 1-pass 1-HOM thin-lens cavity BROOKHAY



## (1) General analytic formula

$$\frac{1}{I_0} = t_b T_{12} \frac{e}{c} e^{i\omega n_r t_b} w(\delta)$$


$$w(\delta) = \sum_{n=0}^{\infty} W([n+\delta]t_b)e^{i\omega nt_b}$$

$$W(\tau) = \left(\frac{R}{Q}\right)_{\lambda} \frac{\omega_{\lambda}^{2}}{2c} e^{-(\omega_{\lambda}/2Q_{\lambda})\tau} \sin \omega_{\lambda} \tau$$

# Find the critical $\omega \in [0,\pi/t_b]$ which gives the maximum real $I_0^{-1}$

The corresponding

Parametric plot of  $1/I(\omega)$  around the  $\omega$  with the largest Re( $1/I(\omega)$ )  $Im(1/I(\omega))$ 





### Accelerator-based Sciences and Education (CLASSE) 1-pass 1-HOM thin-lens cavity NATIONAL LABORATIONAL LABORATICA LABORATICA



# Analytic formulas for $I_{th}$ (Under different physical assumptions)

1. General 
$$\frac{1}{I_0} = t_b T_{12} \frac{e}{c} e^{i\omega n_r t_b} w(\delta)$$

2. Linearized 
$$\frac{1}{I_0} = -\frac{\mathcal{K}}{2} \frac{T_{12} e^{i\omega t_r}}{\Delta \omega t_b + i\epsilon}$$

3. Approximate 
$$I_{\text{th}} = -\frac{\epsilon}{\mathcal{K}} \frac{2}{T_{12} \sin \omega_{\lambda} t_r}$$
  $T_{12} \sin \omega_{\lambda} t_r < 0$ 

$$I_{\rm th} = -\frac{\epsilon}{\mathcal{K}} \frac{2}{T_{12} \sin \omega_{\lambda} t_r}$$

$$T_{12}\sin\omega_{\lambda}t_r < 0$$

$$I_{\text{th}} = \frac{2}{\mathcal{K}|T_{12}|} \sqrt{\epsilon^2 + \frac{1}{n_r^2} \operatorname{mod}(\omega_{\lambda} t_r, \pi)^2} \quad T_{12} \sin \omega_{\lambda} t_r > 0$$



### 1-pass 1-HOM thin-lens cavity BROOKHAVI



## (2) Linearized analytic formula

Valid only if  $\epsilon \ll 1$ 

HOM decay is negligible on the time scale of bunch spacing

$$\frac{1}{I_0} = -\frac{\mathcal{K}}{2} \frac{T_{12} e^{i\omega t_r}}{\Delta \omega t_b + i\epsilon}$$

$$egin{aligned} oldsymbol{\epsilon} &= (\omega_{\lambda}/2Q_{\lambda})t_b \ \mathcal{K} &= t_b (e/c^2)(R/Q)_{\lambda}(\omega_{\lambda}^2/2) \ \Delta \omega &= \omega - \omega_{\lambda} \end{aligned}$$

Same method to find  $I_{th}$  as case 1



#### 1-pass 1-HOM thin-lens cavity BROOKHA

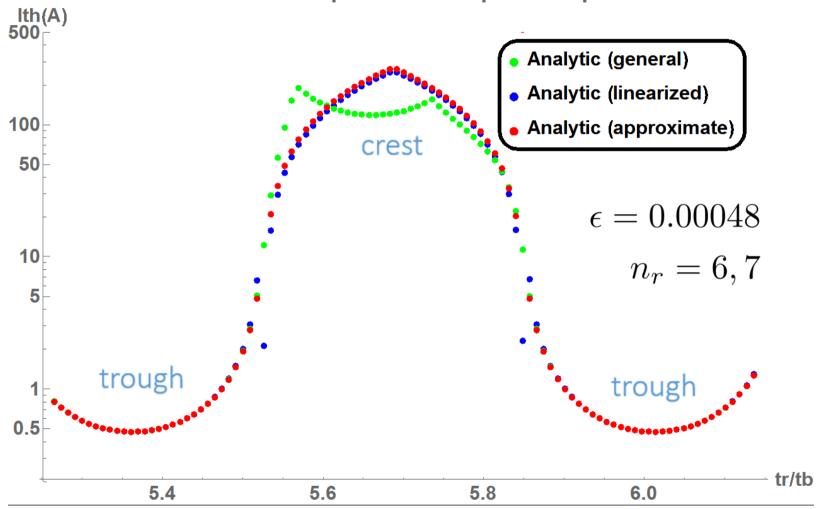


# Approximate analytic formula Valid only if $n_r \epsilon \ll 1$

$$n_r = Top(t_r/t_b)$$
  
 $\epsilon = (\omega_{\lambda}/2Q_{\lambda})t_b$ 

HOM decay is negligible on the time scale of recirculation

For 
$$T_{12}\sin\omega_{\lambda}t_{r}<0$$
  $I_{\rm th}=-\frac{\epsilon}{\mathcal{K}}\frac{2}{T_{12}\sin\omega_{\lambda}t_{r}}$  (the trough) 
$$=-\frac{2c^{2}}{e(\frac{R}{Q})_{\lambda}Q_{\lambda}\omega_{\lambda}}\frac{1}{T_{12}\sin\omega_{\lambda}t_{r}}$$
  $T_{12}\sin\omega_{\lambda}t_{r}>0$   $I_{\rm th}=\frac{2}{\mathcal{K}|T_{12}|}\sqrt{\epsilon^{2}+\frac{1}{n_{r}^{2}}\mathrm{mod}(\omega_{\lambda}t_{r},\pi)^{2}}$  (the crest)


Use the famous formula with caution Make sure the physical condition is met



#### 1-pass 1-HOM thin-lens cavity BROOKHAVEN NATIONAL LABORATORY

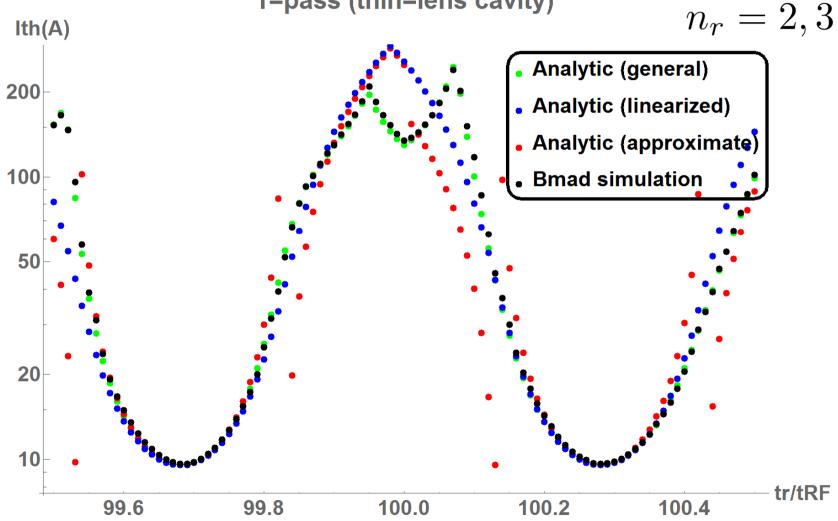


#### DR SCAN for 1-dipole-HOM 1-pass simple ERL



11/28




#### Theory v.s simulation



DR SCAN for 1-dipole-HOM 1-pass (thin-lens cavity)

$$\epsilon = 0.026$$

$$n_r = 2, 3$$





#### **BBU** theory



|           | Number of recirculation pass | Number<br>of<br>HOMs | Comments                                                                                         |
|-----------|------------------------------|----------------------|--------------------------------------------------------------------------------------------------|
| Case<br>1 | 1                            | 1                    | - Most elementary BBU model<br>- A few analytic formulas available for $I_{ m th}$               |
| Case<br>2 | Np > 1                       | 1                    | <ul><li>An intermediate case</li><li>A linearized analytic formula available</li></ul>           |
| Case<br>3 | Np > 1                       | N > 1                | - A general case - Difficult to apply analytic formula - Simulation required to find $I_{ m th}$ |

Current BBU theory (all 3 cases) assumes all HOM(s) are dipoles, and the cavity(s) are thin-lens

#### Case 2



### Formulas for "Np-pass 1-HOM" (Np>1)?

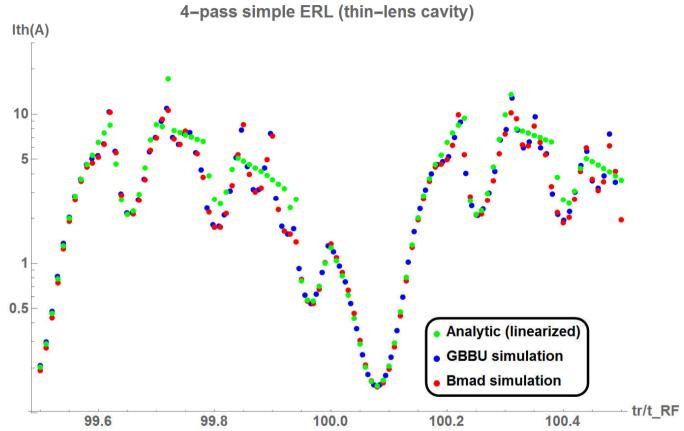
(1) General: (Difficult) Find the maximum real eigenvalue of

$$\frac{e}{c}t_b\sum_{I=I+1}^{N_p}w(\delta(I,L))e^{i\omega\operatorname{Top}[(t^I-t^L)/t_b]t_b}T^{IJ}\qquad \omega\in[0,\pi/t_b]$$

(2) Linearized: (straightforward) Find the maximum real value of

$$\frac{1}{I_0} = -\frac{\mathcal{K}}{2} \frac{1}{\Delta \omega t_b + i\epsilon} \sum_{J=1}^{N_p} \sum_{I=J+1}^{N_p} e^{i\omega(t^I - t^J)} T^{IJ}$$

(3) Approximate: N/A




#### Case 2: Np-pass 1-HOM



#### Theory v.s simulation

DR SCAN for 1-dipole-HOM 4-pass simple ERL (thin-lens cavity)



For a 4-pass ERL with 1 HOM, simulation well agrees with the theory (linearized analytic formula), except on the "crests"



#### Case 3



# General formula (Np-pass, N-cav) for $I_{ m th}$

$$egin{aligned} rac{1}{I_0} ec{V} &= \mathbf{M}(\omega) ec{V} \ W(\sigma) &= \sum_{n=0}^{\infty} W([n+\delta]t_b) e^{i\omega n t_b} \ W( au) &= \left(rac{R}{Q}
ight)_{\lambda} rac{\omega_{\lambda}^2}{2c} e^{-(\omega_{\lambda}/2Q_{\lambda}) au} \sin \omega_{\lambda} au \ M_{ij}^{LJ} &= rac{e}{c} t_b \sum_{I=J+\Theta_{j,i}}^{N_p} w_i(\delta(I,L)) e^{i\omega \mathrm{Top}[(t^I-t^L)/t_b]t_b} T_{ij}^{IJ} \end{aligned}$$

Find the critical  $\omega \in [0, \pi/t_b]$  which gives the maximum real eigenvalue of M

The corresponding  $\,I_0\,$  is  $\,I_{
m th}\,$ 

This is numerically difficult





#### **Summary on BBU theory**

- For case 1 (1-pass, 1-HOM), the famous formula

$$I_{\rm th} = -rac{2c^2}{e(rac{R}{Q})_{\lambda}Q_{\lambda}\omega_{\lambda}}rac{1}{T_{12}\sin\omega_{\lambda}t_r}$$
 is only an approximation.

Use the general formula whenever possible.

- For case 2 (Np-pass, 1-HOM), a linearlized analytic formula has been checked with simulation.
- For case 3 or even more general cases (with coupling or HOMs of higher order), a stronger numerical method is required to apply the general formula.





# Questions?



#### **Bmad software**



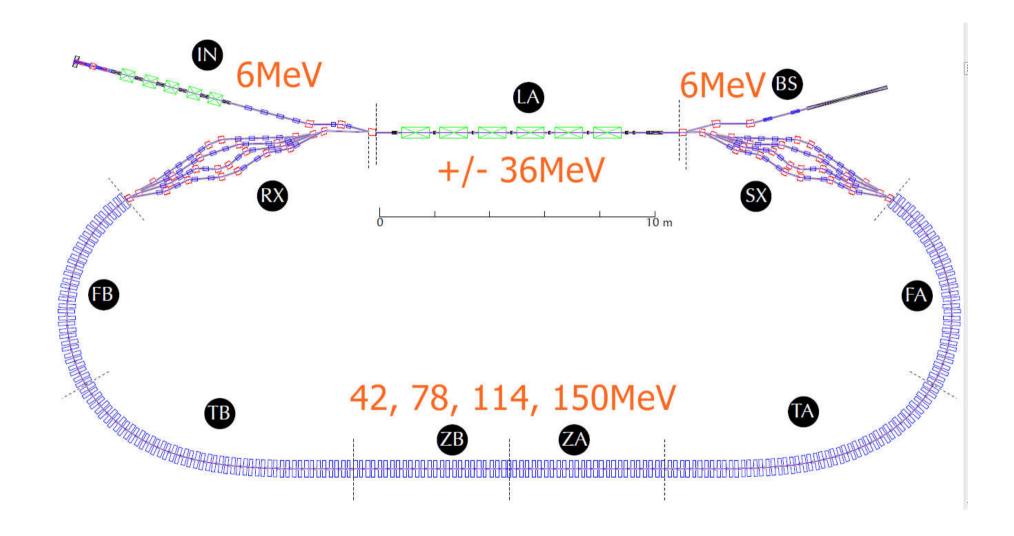


- Developed by Cornell LEPP
- Open source, free, compiled in C and Fortran

David Sagan

- Multi-pass lattice design, lattice optimization, multiparticle tracking algorithms, wakefields, Taylor maps, real-time control "knobs"...
- Constantly (daily to weekly) updated
- https://www.classe.cornell.edu/~dcs/bmad/overview.html






#### **BBU** simulation on Bmad

- Given a complete lattice with multi-pass cavities and HOMs assigned...
- Starts with a test current...
- 1. tracks off-orbit bunches through lattice
- 2. computes bunch-HOM momentum exchanges
- 3. determines stability of all HOM voltages
- ullet Attempts different test currents to pin down  $I_{
  m th}$

#### **CBETA**









# **Design current of CBETA**

| Design current (mA) | KPP | UPP |
|---------------------|-----|-----|
| 1-pass              | 1   | 40  |
| 4-pass              |     | 40  |



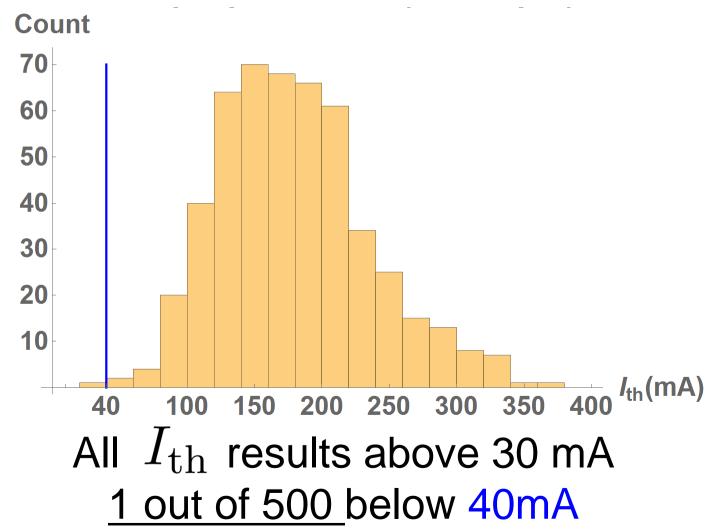
### Simulated HOM data for one CBETA cavity



```
Polarization Angle
                  Frequency R/Q
                                                mode
                            Ohm/m^{2n}
                                                      (Radians/2pi)
                  (Hz)
&long range modes
   lr(1) =
                  8.8302e9
                            7765.5
                                        606830. 1
                                                      0.
                  3.0751e9
                            3901.5
                                        310240. 1
                            81610.
                                        6229.9
                  2.549e9
                            51754.
                                        1654.5
                  1.7041e9
                 1.7381e9
                            42511.
                                        1755.8
                 1.8702e9 39137.
                                        1610.
                                                      0.
                 1.8558e9 25852.
                                        1598.9
                                                      0.
                 1.8711e9 42890.
                                        789.99
                                                      0.
                 1.872e9
                            40762.
                                        653.48
   lr(10) =
                  1.6766e9
                            11687.
                                        707.34
```

- Cavity construction error: ± 125 μm, 250 μm...
- 400 unique cavities provided per error case.

The "10 worst dipole HOMs" (large figure of merit) provided per cavity.  $\xi_{\lambda} = (R/Q)_{\lambda} \frac{\sqrt{(Q_L)_{\lambda}}}{f_{\lambda}}$ 


$$\xi_{\lambda} = (R/Q)_{\lambda} \frac{\sqrt{(Q_L)_{\lambda}}}{f_{\lambda}}$$

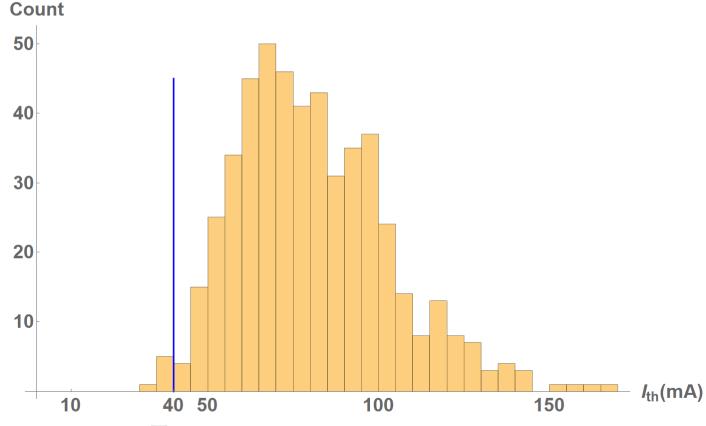


#### **CBETA 1-pass**



# Cavity shape error: 125 µm HOM assignment: random (10 dipole/cavity)





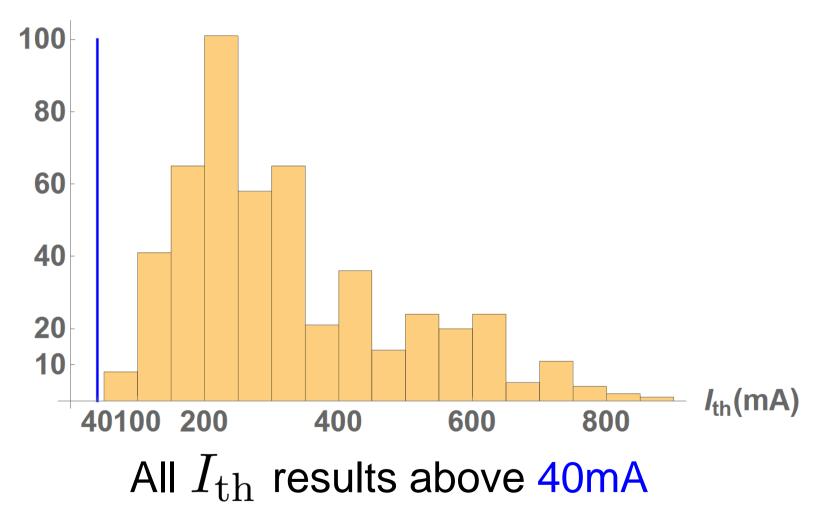

### **CBETA 4-pass**



# Cavity shape error: 125 µm

HOM assignment: random (10 dipole/cavity)




All  $I_{
m th}$  results above 10 mA 6 out of 500 below 40mA



#### **CBETA 4-pass**



# Cavity shape error: 250 µm HOM assignment: random (10 dipole/cavity)







# Questions?



## Accelerator-based Sciences and Education (CLASSE) Aim for better $I_{\rm th}$



$$M_{ij}^{LJ} = \frac{e}{c} t_b \sum_{I=J+\Theta_{i,i}}^{N_p} w_i(\delta(I,L)) e^{i\omega \text{Top}[(t^I-t^L)/t_b]t_b} T_{ij}^{IJ}$$

# Potential ways to improve $I_{ m th}$ :

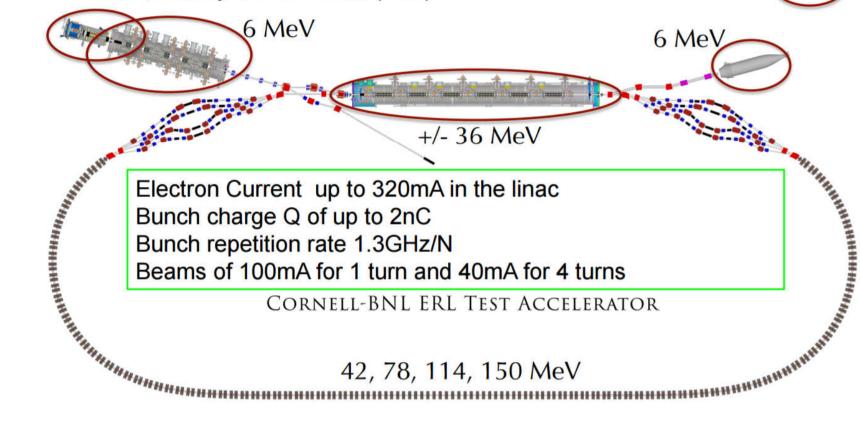
- 1) Change bunch injection time  $\,t_b$
- 2) Introduce additional phase advance
- 3) Introduce x-y coupling





# Does $I_{ m th}$ vary with bunch frequency?

| $f_{RF}/f_b$ | 4-pass $I_{ m th}$ (mA)<br>Averaged over 500 simulations |
|--------------|----------------------------------------------------------|
| 4            | 80.8                                                     |
| 5            | 79.8                                                     |
| 8            | 74.9                                                     |
| 13           | 81.4                                                     |
| 20           | 84.8                                                     |
| 31           | 83.8                                                     |




#### **CBETA**



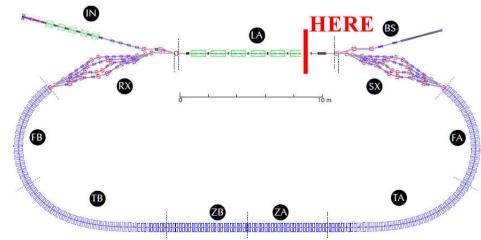
- Cornell DC gun
- 100mA, 6MeV SRF injector (ICM)
- 600kW beam dump
- 100mA, 6-cavity SRF CW Linac (MLC)

Existing components at Cornell





### Vary the optics in Bmad



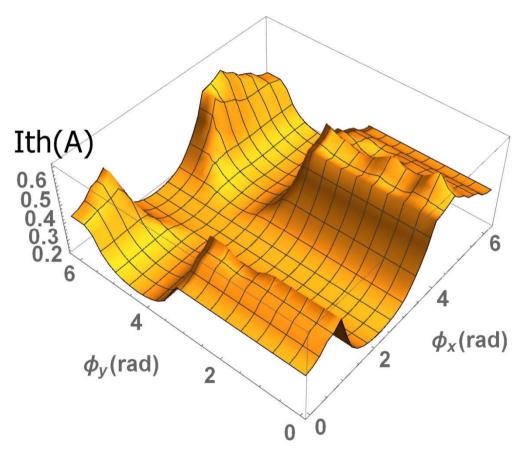

$$M_{1\leftarrow 0}(\phi) = \begin{pmatrix} \sqrt{\frac{\beta_1}{\beta_0}}(\cos\phi + \alpha_0\sin\phi) & \sqrt{\beta_1\beta_0}\sin\phi \\ \frac{1}{\sqrt{\beta_1\beta_0}}[(\alpha_0 - \alpha_1)\cos\phi - (1 + \alpha_0\alpha_1)\sin\phi] & \sqrt{\frac{\beta_1}{\beta_0}}(\cos\phi - \alpha_1\sin\phi) \end{pmatrix}$$

Two cases:

$$T_{decoupled}(\phi_x, \phi_y) = \begin{pmatrix} M_{x \leftarrow x}(\phi_x) & \mathbf{0} \\ \mathbf{0} & M_{y \leftarrow y}(\phi_y) \end{pmatrix}$$

$$\textbf{Cases:} \quad T_{coupled}(\phi_1,\phi_2) = \begin{pmatrix} \mathbf{0} & M_{x\leftarrow y}(\phi_1) \\ M_{y\leftarrow x}(\phi_2) & \mathbf{0} \end{pmatrix}$$




Introduce either T matrix at the end of LINAC 1<sup>st</sup> pass



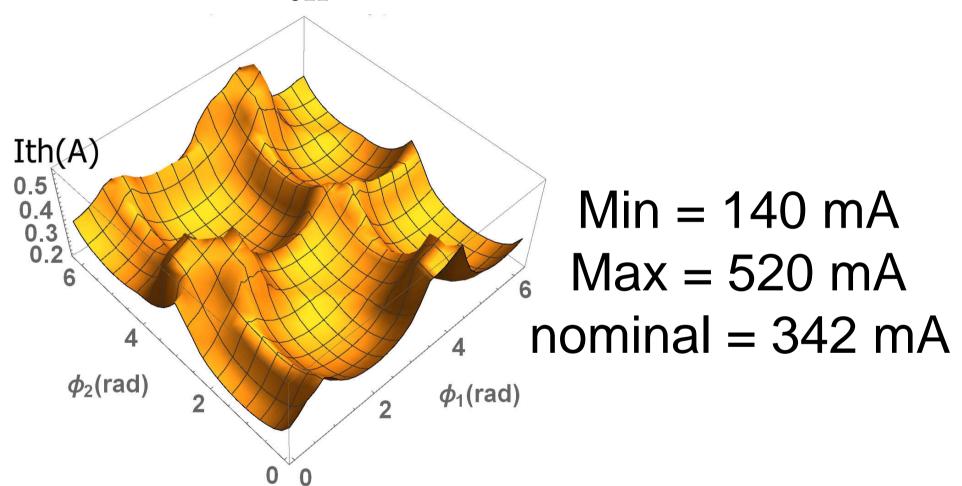
#### **CBETA 1-pass**



# $I_{ m th}$ v.s additional phase advances (decoupled optics)



Min = 140 mA Max = 611 mA nominal = 342 mA


 $I_{
m th}$  results can improve significantly

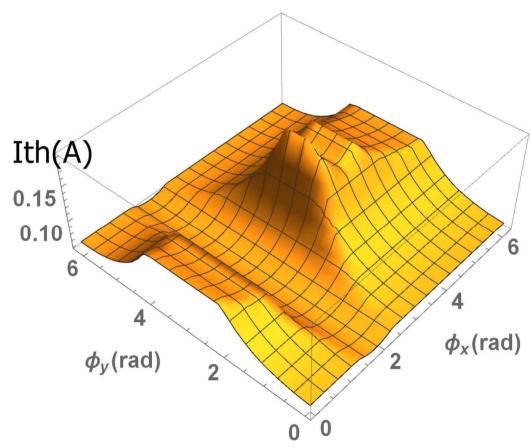


### **CBETA 1-pass**



# $I_{ m th}$ with x-y coupling




 $I_{
m th}$  results can improve significantly



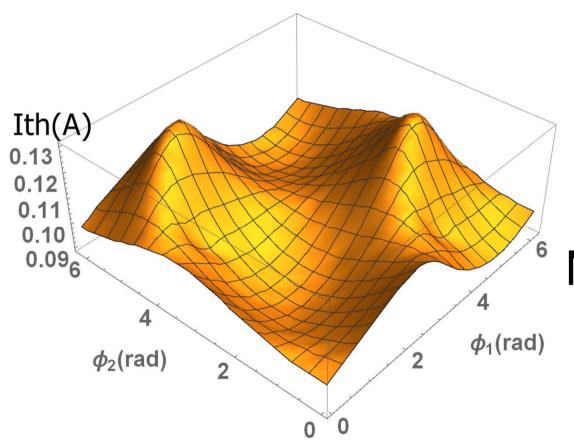
#### **CBETA 4-pass**



# $I_{ m th}$ v.s additional phase advances (decoupled optics)



Min = 61 mA Max = 193 mA Nominal = 69 mA


 $I_{
m th}$  results can improve



## **CBETA 4-pass**



# $I_{ m th}$ with x-y coupling



Min = 89 mA Max = 131 mA Nominal = 69 mA

 $I_{
m th}$  results can improve





| Potential improvement on Ith from the current design (mA) | Additional phase<br>advances<br>(decoupled optics) | x-y coupling          |
|-----------------------------------------------------------|----------------------------------------------------|-----------------------|
| 1-pass                                                    | ~ 200 mA<br>to 400 mA                              | ~ 200 mA<br>to 400 mA |
| 4-pass                                                    | ~150 mA                                            | ~ 60 mA               |



#### **CBETA BBU results**



- $\bullet$  For 1-pass, 99% simulated  $I_{
  m th}$  are above the UPP (40mA)
- $\bullet$  For 4-pass, 98% simulated  $I_{\rm th}$  are above the UPP (40mA)
- $\bullet$  For 4-pass, introducing additional phase advances allows greater improvement in  $I_{\rm th}$  than x-y coupling





# Questions?



#### Acknowledgment



#### Special thanks to:

Prof. Georg Hoffstaetter Christopher Mayes David Sagan

#### References

Hoffstaetter, G. H. and I. V. Bazarov. Beam-breakup instability theory for energy recovery linacs. Physical Review Special Topics - Accelerators and Beams, 7 (2004).

Georg H. Hoffstaetter, I. V. B. and C. Song. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling. Physical Review Special Topics - Accelerators and Beams, 10 (2007).

#### Bmad manual





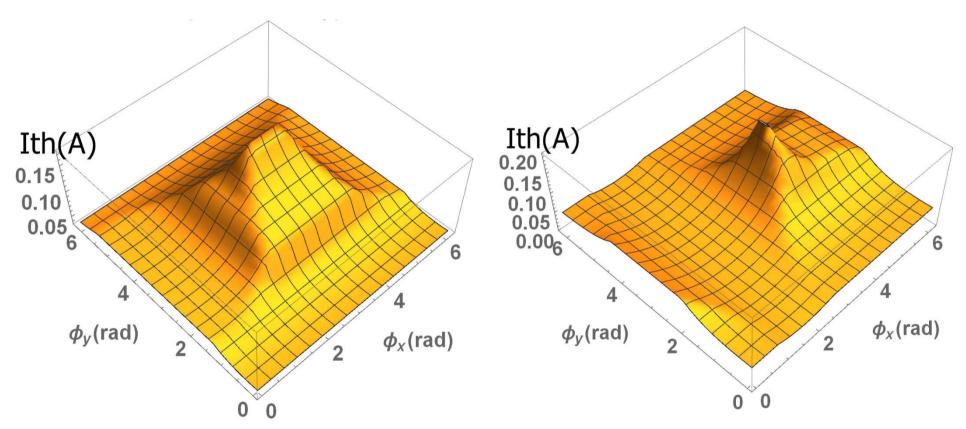
# THE END



#### Helper Slide #2



## RFC cavity HOMs from Nick Valles


Shape variations in the optimized 7-cell cavity geometry were simulated by adding random errors to each ellipse parameter from a uniform distribution for the error cases of  $\pm 1/8$ ,  $\pm 1/4$ ,  $\pm 1/2$  and  $\pm 1$  mm. These resulting cavity shapes were tuned cell by cell to 1.3 GHz to ensure field flatness. Subsequently the dipole mode spectrum was calculated up to 10 GHz, using 4 boundary conditions at the at the center plane of the HOM beamline absorbers at the ends of the cavity beamtubes (electric-electric, magneticmagnetic, electric-magnetic and magnetic-electric) to simulate the superposition of HOMs that are possible for a cavity in a long cavity string.



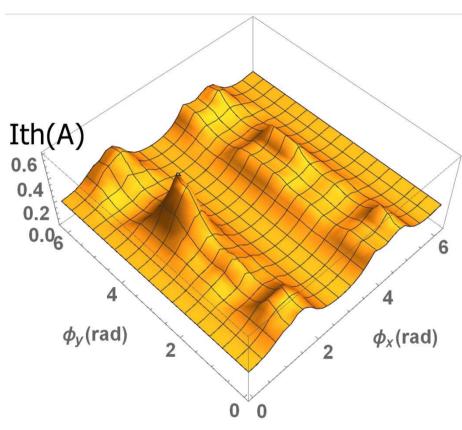
### 4-pass decoupled

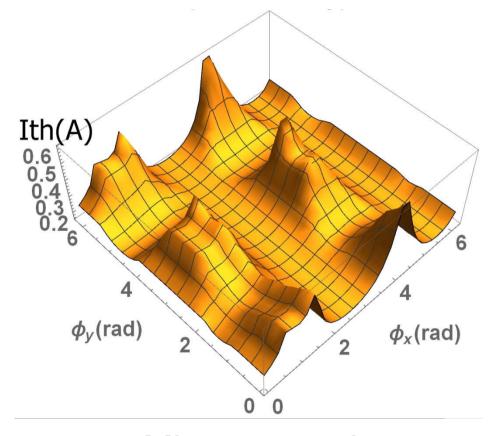


## with different HOM assignments...



Min = 37 mA Max = 176 mA Nominal = 38 mA


Min = 39 mA Max = 205 mA Nominal = 49 mA




#### 1-pass decoupled

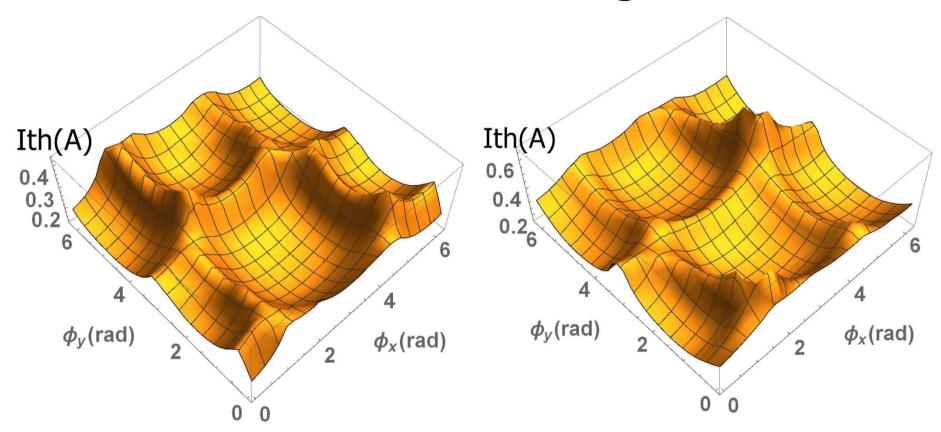


### with different HOM assignments...





Min = 175 mA Max = 640 mA Nominal = 218 mA


Min = 165 mA Max = 595 mA Nominal = 248 mA

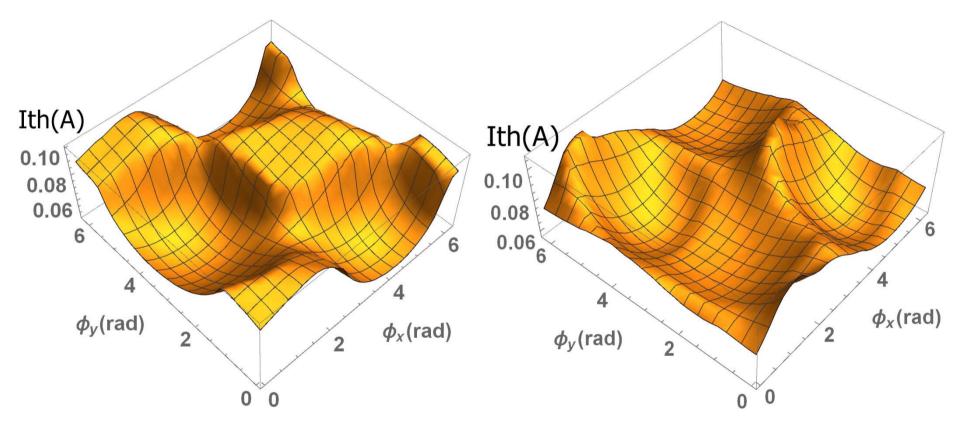


### 1-pass coupled



### with different HOM assignments...




Min = 136 mA Max = 436 mA Nominal = 218 mA Min = 166 mA Max = 678 mA Nominal = 248 mA



### 4-pass coupled



## with different HOM assignments...



Min = 47 mA Max = 100 mA Nominal = 38 mA

Min = 57 mA Max = 107 mA Nominal = 49 mA